СРАВНЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ И ТЕОРЕТИЧЕСКИХ РЕЗУЛЬТАТОВ ПО ОПРЕДЕЛЕНИЮ КРИТИЧЕСКОГО ЧИСЛА РЕЛЕЯ В УЗКИХ ПОЛОСТЯХ

А.Ф.ГЛУХОВ, Н.А.ТУКТАМЫШЕВА Пермский государственный национальный исследовательский университет, 614990, Пермь, Букирева, 15

В узких полостях – прямоугольных ячейках размерами $2d \times l \times h$ и каналах сечением $2d \times 2d$ и высотой *h*, число Релея, определяющее интенсивность конвекции, разумно выражать через самый маленький размер полости – полутолщину ячейки или канала *d*

$$Ra = \frac{g\beta}{v\chi} d^4 \nabla T.$$

При этом, конечно, и другие геометрические параметры полости тоже влияют на конвективные течения жидкостей. В известной работе [1] получен спектр критических чисел Релея для конвекции жидкости в узкой прямоугольной ячейке при подогреве снизу. В случае одновихревого течения критическое число выглядит следующим образом

$$Ra_{c} = \frac{\pi^{4}}{16} \left(1 + \frac{L^{2}}{H^{2}} \right) \left(\frac{4}{L^{2}} + \frac{4}{H^{2}} + 1 \right)^{2},$$

здесь использована безразмерная высота H = h/d и длина ячейки L = l/d. При этом предполагалось, что широкие грани ячейки обладают высокой теплопроводностью, т.е. на них поддерживается постоянный вертикальный градиент температуры, а возмущения температуры затухают. Профиль температуры T и скорости поперек узкой ячейки при этом определяется функцией пропорциональной $\cos(\pi z/2)$, здесь z – координата поперек ячейки в единицах d.

В узких связанных каналах квадратного сечения с теплопроводными стенками аналогичный расчет с аналогичным профилем температуры и скорости поперек каналов дает нижнее критическое число Релея [2].

$$Ra_{c} = \frac{\pi^{4}}{4} / \left(1 - \frac{2\sqrt{2}}{\pi H} th\left(\frac{\pi H}{2\sqrt{2}}\right) \right).$$

Однако в экспериментах часто одна из металлических стенок каналов [3] или ячейки [4] заменяется стенкой из оргстекла для проведения визуальных наблюдений. Это немедленно сказывается на критическом числе Релея и затрудняет количественное сравнение теории с экспериментом.

Рассчитаем критическое число Релея для ячейки по методике [1], но предполагая одну из широких граней теплоизолированной dT/dz = 0, а другую теплопроводной T = 0. В этом случае профиль температуры, удовлетворяющий условиям на обоих широких границах можно выбрать в виде $\cos(\pi(z-1)/4)$. Поскольку профиль скорости остается прежним пропорциональных $\cos(\pi z/2)$, то критическое число Релея для одновихревого течения пришлось получать осреднением линейных уравнений поперек ячейки методом Галеркина с соответствующими весами. Результат расчетов таков

$$Ra_{c} = \frac{\pi^{4}}{16} \left(1 + \frac{L^{2}}{H^{2}} \right) \left(\frac{4}{L^{2}} + \frac{4}{H^{2}} + 1 \right) \left(\frac{4}{L^{2}} + \frac{4}{H^{2}} + \frac{1}{4} \right) \left(\frac{3\pi}{8\sqrt{2}} \right)^{2}.$$

При отношении длины к высоте L/H = 1/2 и $L, H \square 1$ имеем в ячейке с одной теплоизолированной широкой гранью критическое число Релея меньше классического варианта [1] почти в шесть раз:

 $Ra_c = (5\pi^4/64) \cdot (3\pi/16\sqrt{2})^2 = 1.33 \text{ против } Ra_c = 5\pi^4/64 = 7.61.$

Проведя аналогичные рассуждения для связанных каналов квадратного сечения можно увидеть, что замена одной металлической стенки из четырех на теплоизолированную из оргстекла [2] также должна уменьшить критическое число Релея. При $H \square 1, Ra_c = (\pi^4/4) \cdot (3\pi/8\sqrt{2})^2 = 16.9$ против $Ra_c = \pi^4/4 = 24.3$. При использовании связанных каналов прямоугольного сечения, когда стенка, разделяющая встречные потоки-каналы сделана из оргстекла [3] следует ожидать еще меньших критических Релея. В $L, H \square 1$ чисел ЭТОМ случае получатся В пределе $Ra_c = (\pi^4/16) \cdot (3\pi/16\sqrt{2})^2 = 1.06$.

Для проверки правильности сделанных выводов авторами изготовлена прямоугольная ячейка размерами 2d = 2.2 мм, l = 16 мм, h = 30 мм максимально соответствующая классической схеме (Любимов и др. [1]). Обе широкие грани сделаны из алюминия, т.е. являются высокотеплопроводными. На узких гранях условия также соответствуют теоретической модели: вверху и внизу теплопроводные алюминиевые границы, а боковые грани теплоизолированные из оргстекла. Эксперимент с водой показал, что критическая разность температур для возникновения конвекции воды в такой ячейке равна 8 °C, а критическое $Ra_c = 9$. Теория [1] предсказывает значение $Ra_c = 8.2$.

В следующей таблице систематизированы результаты настоящего и прошлых экспериментов. Проведено сопоставление с результатами теоретического анализа, учитывающего разнородные условия на границах узких ячеек и узких каналов. Учет реальных условий на границах полостей резко сблизил теорию и эксперимент. Из таблицы видно, что соответствующие теоретические и экспериментальные значения *Ra*_c отличаются друг от друга не более чем на 10%.

Таблица.	Экспериментальные	U	теоретические	критические	числа
Релея в узких	с полостях с различнь	іми	тепловыми усло	виями на грані	лиах

Параметры	Ячейка обе грани металл	Ячейка [4] грани: 1 металл, 1 оргстекло	Каналы [2] квадрат. сечение 3 металл 1 оргстекло	Каналы [3] прямо- уголь-ное сечение 1 металл 1 орг- стекло
d×h×l, см	0.11×3× 1.6	0.075×3.2× 1.7	0.16×5×0.1 6	0.065×2× 1.1
L	15	23	-	17
Н	27	43	31	31
Теория, <i>Ra</i> с	8.19 ^[1]	1.43	17.4	1.09
Эксперимент, <i>Ra</i> c	9	1.4	19	1.1
$\Delta T_{\rm c} {}^{\circ}{\rm C}, \text{ вода при}$ 25° $\frac{g\beta}{v\chi} = 2.3 \cdot 10^4 K^{-1} cm$	-3 8	6	6.2	5.5

СПИСОК ЛИТЕРАТУРЫ

- 1. *Любимов Д.В., Путин Г.Ф, Чернатынский В.Н.* Конвекция в ячейке Хеле-Шоу при подогреве снизу // Гидродинамика. ПГУ. 1977. С 3–14.
- 2. Глухов А.Ф., Зорин С.В., Путин Г.Ф., Петухова Е.С. Тепловая конвекция в связанных вертикальных каналах конечной высоты // Конвективные течения. Пермский педагогический институт. Пермь. 1985. С. 24–31.
- 3. Понизовская К.В. Экспериментальное исследование конвекции бинарной смеси с термодиффузией в узких полостях: дис. магистр физики, ПГУ. Пермь, 2010.
- 4. *Demin V.A., Glukhov A.F.* Thermal convection of binary mixes in thin channels // Lecture Notes of VIII International Meeting on Thermodiffusion. Julich, Germany. 2008. P. 187–195.