ВЛИЯНИЕ ОБРАБОТКИ В ВЫСОКОИОНИЗИРОВАННОЙ СРЕДЕ НА СТРУКТУРУ И ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОТОННООБМЕННЫХ ВОЛНОВОДОВ В LiNbO₃ X-CPE3A

О.Н. ПИЛЮГИНА*, А.Б. ВОЛЫНЦЕВ*, У.О. САЛГАЕВА**, Д.И. СИДОРОВ**, С.С МУШИНСКИЙ**, В.И. КИЧИГИН*, И.В. ПЕТУХОВ*

*Пермский государственный национальный исследовательский университет, 614990, Пермь, Букирева, 15
**ОАО «Пермская научно-производственная приборостроительная компания», 614990, Пермь, 25 Октября, 10

В работе представлены результаты исследования структуры и оптических характеристик протоннообменных волноводов, подвергшихся обработке в высокоионизированной среде.

Оптические волноводы являются основным компонентом интегральнооптических систем (ИОС) на основе ниобата лития (НЛ) [1]. В последнее время уделяется большое внимание улучшению характеристик оптических волноводов в связи с необходимостью повышения чувствительности ИОС и точности измерений, осуществляемых с их помощью. Для улучшения характеристик оптических волноводов используются комбинированные методы: создание гибридных волноводов [2], протонный обмен (ПО) с последующим отжигом и ионная имплантация [3, 4]. Гибридные волноводы способны поддерживать распространение света как одной поляризации, так и обеих поляризаций. Это необходимо при производстве ряда базовых элементов интегральной оптики. Диффузия протонов после ПО способствует улучшению характеристик канала и снижению оптических потерь в нем. Ионная имплантация ПО волновода способствует заглублению канала, но в виду того, что имплантируемые частицы обладают огромными энергиями (10-2000 кэВ), они существенно повышают дефектность структуры волновода, тем самым разрушают его. Перспективным методом улучшения характеристик волновода может служить и обработка ПО волноводов в высокоинизированной среде (плазме).

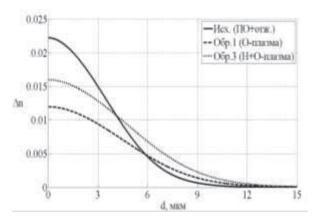
Целью проведенных экспериментов является исследование влияния обработки в высокоионизированной среде различного состава на структурные и оптические характеристики ПО волноводов в LiNbO₃.

Для изготовления образцов волноводных слоев были использованы пластины X-среза НЛ (конгруэнтного состава). Эти пластины были разрезаны на образцы размером $10 \times 15 \times 1$ мм³ [1]. После этого они были тща-

тельно отчищены в парах изопропилового спирта в течение 10 минут. После все образцы были подвергнуты ПО в закрытом металлическом реакторе в бензойной кислоте при температуре 174°С. Затем ПО образцы были промыты в изопропиловом спирте и отжигались при 354°С в течение 5 часов на воздухе. Далее все образцы, кроме исходного, были подвергнуты обработке плазмой и дополнительному отжигу.

Сформированные ПО волноводы подверглись обработке в плазме (табл. 1) с помощью установки магнетронного травления НИКА-2010.

	Обр. 1	Обр.2	Обр. 3
Вид плазмы	O_2	H_2	H ₂ +O ₂
Смещение на стол,	50	100	100
Вт			
Расход газа (л/час)	3	6	6 O ₂ ; 3 H ₂
Антенна, Вт	800	800	800
Время процесса, с	600	900	900

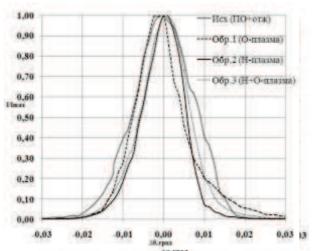

Таблица 1. Режимы обработки в плазме ПО волноводов

Оптические характеристики исходного и обработанных образцов исследовались с помощью модовой спектроскопии. Для исследования изменений фазового состава образцов был использован метод дифракционного структурного анализа [1], позволивший с высокой точностью проследить изменения в структуре образцов, подвергшихся обработке в плазме.

Результаты модовой спектроскопии представлены в табл. 2. По графикам зависимости профиля приращения показателя преломления от толщины волноводного слоя (рис. 1-2) видно, что после обработки образцов плазмой контрастность волноводного слоя понизилась, увеличилась глубина волноводного слоя. При исследовании образца-2, подвергшегося обработке в водородной плазме мод не было обнаружено. Данный эффект в настоящей работе не был изучен.

Образцы	Δn_{max}	d, мкм
Исходный	0,023	4,9
О-плазма	0,015	6,4
Н+О плазма	0,016	6,5
Исходный после доп. отжига	0,012	8,1
О-плазма после доп. отжига	0,0085	7,8
Н+О плазма после доп. отжига	0,0093	8,0

Таблица 2. Оптические характеристики волноводов



0.012 0.01 0.008 Оп 0.006 0.004 0.002 0 3 6 9 12 15

Рис. 1. Зависимость профиля приращения показателя преломления от толщины волноводного слоя Дп(d) образцов до дополнительного отжига

Рис. 2. Зависимость профиля приращения показателя преломления от толщины волноводного слоя образцов после дополнительного отжига

Исследования структуры по кривым качания (ω -кривые) не выявили существенных дефектов волноводного слоя после обработки в плазме (рис. 3-4). Монокристаличность образцов не нарушается. Однако заметно сужение $\theta/2\theta$ кривых (рис. 5-6).

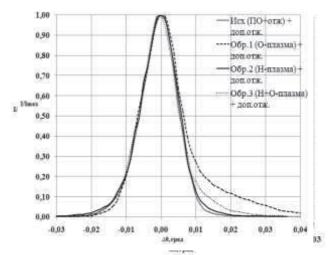


Рис. 5. $\theta/2\theta$ кривые, снятые с образцов до дополнительного отжига, 1-й порядок отражения от плоскости (110)

Рис. 6. $\theta/2\theta$ кривые, снятые с образцов распосле дополнительного отжига, 1-й порядок отражения от плоскости (110)

В результате проведения серии экспериментов было установлено, что обработка образцов в плазме не нарушает структуру волноводов, вследствие чего деформации в структуре не увеличиваются. Заметно снижение контрастности волноводов, а также увеличение волноводного слоя образцов, подвергшиеся обработке в плазме. Таким образом, обработкой плазмой можно влиять на оптические характеристики волноводов, не нарушая его структуру.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шевцов Д.И. Структурные и оптические свойства метастабильных фаз в протонообменных волновыдных слоях на монокристалле ниобата лития. Диссертация на соискание ученой степени кандидата физикоматематических наук. Пермь, 2005. 167 с.
- 2. Bentini G.G., Bianconi M., Chiarini M., Correra L. Effect of low dose high energy O³⁺ implantation on refractive index and linear electro-optic properties in X-cut LiNbO₃: Planar optical waveguide formation and characterization // J. Appl. Phys., Vol. 92, No. 11, 2002. P. 6477–6483.
- 3. *Tianhao S., Xinyuan J., Zhengquan X., Xiqi F.* Lattice disorder, refractive index changes and waveguides in LiNbO3 formed by H⁺-implantation // Materials Science and Engineering, B I 8, 1993.P. 83–87.
- 4. Zhang S.-M., Wang K.-M., Liu X., Bi Z., Liu X-H. Planar and ridge waveguides formed in LiNbO₃ by proton exchange combined with oxygen ion implantation //J. Optics Express., Vol. 18, No. 15.P.15609–15617.